Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation

نویسندگان

  • Qiuhe Lu
  • Jing Han
  • Ligang Zhou
  • James A. Coker
  • Priya DasSarma
  • Shiladitya DasSarma
  • Hua Xiang
چکیده

Multiple general transcription factors (GTFs), TBP and TFB, are present in many haloarchaea, and are deemed to accomplish global gene regulation. However, details and the role of GTF-directed transcriptional regulation in stress response are still not clear. Here, we report a comprehensive investigation of the regulatory mechanism of a heat-induced gene (hsp5) from Halobacterium salinarum. We demonstrated by mutation analysis that the sequences 5' and 3' to the core elements (TATA box and BRE) of the hsp5 promoter (P(hsp5)) did not significantly affect the basal and heat-induced gene expression, as long as the transcription initiation site was not altered. Moreover, the BRE and TATA box of P(hsp5) were sufficient to render a nonheat-responsive promoter heat-inducible, in both Haloferax volcanii and Halobacterium sp. NRC-1. DNA-protein interactions revealed that two heat-inducible GTFs, TFB2 from H. volcanii and TFBb from Halobacterium sp. NRC-1, could specifically bind to P(hsp5) likely in a temperature-dependent manner. Taken together, the heat-responsiveness of P(hsp5) was mainly ascribed to the core promoter elements that were efficiently recognized by specific heat-induced GTFs at elevated temperature, thus providing a new paradigm for GTF-directed gene regulation in the domain of Archaea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Expression of Human Granulocyte Macrophage Colony Stimulating Factor by Heat-Induction in Escherichia coli

A self-regulated high-copy number plasmid containing chloramphenicol resistant gene, for the production of recombinant proteins under the regulation of bacteriophage ?pL promoter, was constructed. The designed 5024 base pair expression plasmid contained a heat sensitive repressor cI857 coding gene to regulate the function of ?pL promoter under heat shock induction. Using the constructed vector,...

متن کامل

Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences.

Functional transcription initiation complexes can be assembled in vitro without the aid of regulatory factors that bind to upstream activating sequences. However, promoters that lack upstream activating sequences are transcribed poorly if at all in vivo, suggesting that regulatory factors are necessary for the assembly of transcription initiation complexes in cells. To test this possibility, we...

متن کامل

A DNA Sequence Directed Mutual Transcription Regulation of HSF1 and NFIX Involves Novel Heat Sensitive Protein Interactions

BACKGROUND Though the Nuclear factor 1 family member NFIX has been strongly implicated in PDGFB-induced glioblastoma, its molecular mechanisms of action remain unknown. HSF1, a heat shock-related transcription factor is also a powerful modifier of carcinogenesis by several factors, including PDGFB. How HSF1 transcription is controlled has remained largely elusive. METHODOLOGY/PRINCIPAL FINDIN...

متن کامل

Characterization of two heat shock genes from Haloferax volcanii: a model system for transcription regulation in the Archaea.

The expression of two heat-responsive cct (chaperonin-containing Tcp-1) genes from the archaeon Haloferax volcanii was investigated at the transcription level. The cct1 and cct2 genes, which encode proteins of 560 and 557 amino acids, respectively, were identified on cosmid clones of an H. volcanii genomic library and subsequently sequenced. The deduced amino acid sequences of these genes exhib...

متن کامل

Genetic polymorphisms in the promoter region of catalase gene, creates new potential PAX-6 and STAT4 response elements

Catalase (CAT, OMIM: 115500) is an endogenous antioxidant enzyme and genetic variations in the regulatory regions of the CAT gene may alter the CAT enzyme activity and subsequently may alter the risk of oxidative stress related disease. In this study, potential influence(s) of the A-21T (rs7943316) and C-262T (rs1001179) genetic polymorphisms in the CAT promoter region, using the ALGGEN-PROMO.v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008